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Although the Chapman Enskog treatment of the Boltzmann equation is one of 
the first examples of the elimination of fast variables, it is not usually presented 
consistently from that point of view. Here it is developed systematically as a 
special case of the general method for eliminating fast variables from nonlinear 
equations. As a result certain ambiguities can be remedied. First, it is incon- 
sistent with the separation of time scales to extend the phenomenological 
description of the gas by including some of the higher moments of the dis- 
tribution function (such as the heat flow). In the application to the relativistic 
Boltzmann equation, the dilemma concerning the choice of the lowest order 
approximation is resolved. In the final section it is demonstrated that 
unsystematic elimination of fast variables leads to secular terms. 

KEY WORDS:  Kinetic theory; elimination of fast variables; extended ther- 
modynamics; relativistic Chapman Enskog method. 

1. I N T R O D U C T I O N  A N D  S U M M A R Y  

The celebrated Chapman Enskog treatment of the Boltzmann equation 
(1 6) is not just a method for obtaining an approximate solution. It also 
manages to extract from the kinetic equation for the particle distribution 
F(t, r, p) a set of hydrodynamic equations for the particle number n(r), the 
momentum g(r), and the energy e(r) per unit volume. These quantities con- 
stitute a drastically reduced specification of the state of the gas: the other 
variables needed to specify F(t, r, p) have been eliminated. This is possible 
because all other variables vary rapidly--on the time scale of the 
collisions--while n, g, and e are not affected by the collisions. They vary 
only through transport, which is slow when the gradients are small. The 
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time scales are separated by a parameter e, roughly the ratio of the mean 
free path to the distance over which F(t, r, p) varies appreciably in space. 

The general problem of eliminating fast variables has received much 
attention in recent years. Most of the work is concerned with linear 
equations (7,s) and is therefore not suitable for the Boltzmann equation. 
However, nonlinear equations have also been studied (9'1~ and a general 
scheme has been developed. (~~ My aim is to show that the Chapman 
Enskog treatment of gases can be regarded as a straightforward application 
of that general scheme. Of course, the fact that Chapman-Enskog is a case 
of eliminating fast variables is well known. (The name has even been used 
generically for the general case. (11/) Yet a detailed derivation will lead to 
several conclusions. 

The first conclusion is that the Chapman-Enskog method is not - - in  
the words used by Grad (3) to describe the presentation by Chapman and 
Cowling(Z)--"an ad hoc recipe for juggling terms in an expansion of F in 
order to get results which have the desired form." Rather, it is uniquely 
determined by the rules of the general scheme. In particular, the choice of 
the slow variables n, g, and e is decreed by the form of the Boltzmann 
equation itself rather than by the desire to recover the familiar 
hydrodynamic equations. This implies the second conclusion: There is no 
foundation for including additional variables in the macroscopic descrip- 
tion, as is done in so-called "extended thermodynamics. ''(12) 

Third, the applications of the Chapman-Enskog method to relativistic 
gases(a3 16) suffer from an irritating arbitrariness in the definition of the 
hydrodynamic quantities and hence of the resulting hydrodynamic 
equations. This lack of uniqueness indicates that an essential ingredient is 
missing. I claim that what is missing is the proper separation of time scales. 
It will be shown in Section 4 that the systematic scheme for eliminating fast 
variables leads to a perfectly unique definition. It does not coincide with 
any of the options treated in the literature. In fact, it is not Lorentz- 
invariant: Two different observers looking at the same gas will extract dif- 
ferent sets of slow variables, not related to each other by a Lorentz trans- 
formation! 

2. T H E  G E N E R A L  M E T H O D  FOR 
E L I M I N A T I N G  FAST V A R I A B L E S  

I summarize the relevant part of Ref. 10. Consider a set of J differential 
equations for J unknown xj, involving a small parameter e: 

dxj/dr = ~ ( x ;  e), j =  1, 2 ..... J (2.1) 

It is supposed that the fj  can be at least formally expanded in e. A slow 
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variable is a function Y(x)  such that dY/d t  = O(e). The general method of 
eliminating fast variables aims at deriving equations for the evolution of the 
slow variables alone, in which the other variables no longer appear. That is 
achieved by the following four steps. 

(i) Identify the slow variables by solving the "unperturbed" 
equation 

d x / d r  = fj(x; 0) (2.2) 

and determining its constants of the motion, i.e., the functions Y(x)  such 
that 

d Y  8 Y  
- 2 7 x  ~(x;  o) = o (2.3) 

& j J 

They are the slow variables of (2.1). Let there be a complete set of R 
independent Yr(x) [i.e., all other functions obeying (2.3) can be expressed 
as functions of these Yr, but not of a smaller set]. 

(ii) Define as new variables, instead of the xj, 

Yr = Yr(x), z v = Zv(x) ,  v : 1, 2 ..... N (2.4) 

where the Zv are arbitrary, subject only to the condition that the transfor- 
mation from {xj} to {y,, zv} can be inverted. Hence, N =  J - R .  Transfor- 
mation of (2.1) yields 

dyffdz = egr(Y, z; e), dzv/dz = h,.(y, z; ~) (2.5) 

where again gr and hv can be expanded in e. 

(iii) Rewrite these equations on the slow time scale t =  ez, on which 
the yr vary, 

dyr/dt = g~(y, z) (2.6a) 

dzv/dt = (l/e) hv(y, z) (2.6b) 

We have here omitted for simplicity the e dependence of gr and h,~ because 
it will not occur in the present application to the Chapman-Enskog 
problem. Now expand the z~, 

zv = z~ ~ + ez~ l) + ~2z~21 + "'" 

leaving the y ,  as they are. Determine .(o) from A, v 

hv(y, z (~ = 0 (2.7) 



712 van Kampen 

It is assumed that these N equations have a single solution 

z~ ~ = ~ v ( y )  (2.8) 

and that this is a point attractor of (2.6b) when y is kept fixed. (This 
assumption characterizes what was called in Ref. l0 "the first category.") 
The slow motion of Yr is now given in lowest approximation by 

(iv) 
of (2.6b), 

dyjdt  = gr(Y, ~o(y)) (2.9) 

For the next approximation determine z~ 11 from the next order 

dz~ ~ Ohv(y, z (~ 
_ _ ( l )  

dt &(o) % 
t t  

(summation implied) (2.10) 

Substitute the result again in (2.6a), 

dyr/dt = gr(Y, z(~ + ez~ (2.11) 

This gives the slow motion one order better than (2.9). 
It is clear that one can continue in this way to higher orders. It should 

be emphasized, however, that the slow variables Yr have been picked once for 
all: they are the constants of the motion of the unperturbed equation (2.2). 
The elimination of the fast variables leads to a closed set of equations (2.9); 
the higher orders add corrections to these equations as in (2.11), but do 
not have the effect of enlarging the set of slow variables. Thus, the 
elimination of fast variables yields (in each order) a closed set of equations 
for the evolution of the slow variables by themselves. The fast variables ride 
along as determined by (2.7) and (2.10). 

The solutions found in this way constitute a subclass of all solutions of 
the original equations given in (2.1) or in (2.6), namely the subclass of 
those solutions that can be expanded in e. However, in order to be able to 
solve (2.1) for every set of initial values xj(0) one needs all solutions/17) 
The solutions of the subclass are specified by the initial values yr(0) alone, 
while the initial zv(0) cannot be chosen, but must obey (2.7) and (2.10). 
The reason why nonetheless this subclass has a dominant role is that every 
solution of (2.1) tends rapidly toward one of the solutions of the subclass. 
For, since ~0v(y) is by assumption an attractor of (2.6b), every z~ that 
initially violates (2.7) approaches the required value (2.8) in a short initial 
transient period of order t ~ e. This transient (or "initial slip" or "boundary 
layer") is not included in the results (2.9), or (Zl l ) ,  or any higher 
approximations. As a consequence, when applying this scheme to the 
Chapman-Enskog treatment of the Boltzmann equation we shall find the 
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hydrodynamic equations. But if some arbitrary initial F(0, r, p) is given, the 
initial nonhydrodynamic behavior eludes us during a transient period of a 
few collision times. 

3. A P P L I C A T I O N S  TO THE C H A P M A N - E N S K O G  
T R E A T M E N T  OF THE B O L T Z M A N N  GAS 

Let r be the position of a particle, p its momentum, and v = p/m its 
velocity. Let F(t, r, p)dr  dp be the number of particles at time t in a six- 
dimensional cell dr dp of the one-particle phase space. The Boltzmann 
equation is 

_ _  _ OF(t, r, p) t- _1 aF(t,r, p) - v .  C[F] (3.1) 
8t ~t e 

C[F] is a nonlinear operator that maps any function F(r, p) into another 
function of r, p: 

C[F] = f w(p, p~ l P2, p3)[F(r, P2) F(r, P3) 

- F ( r ,  p) F(r, p~)] dpx dp2 dp3 (3.2) 

The transition probability w has the form 

(r 
w(p, pl]pe, p3 )=63(p+p l - -p2 - -P3)6  Fm + p~ 2m 

(3.3) 
2m Fm ~ 

where a is a function of IP-P~] and (P-P1)  (P2-P3), which describes the 
dynamics of two-particle collisions/n) The function w has the symmetry 
properties 

w(p, Pl ]P2, P3) = w(p,, PIP2, P3) 

= w(p, p~ 1113, P2) = w(p2, P3 I P, Px) 

The factor 1/~ is a scale factor for the overall density; small ~ gives high 
density and therefore frequent collisions. 

An alternative way of introducing e is the following. Start from the 
Boltzmann equation without e: 

8F/& = - v .  8F/Sr + CE F] 

One tries to solve it for the case that F varies slowly in space. This is 
expressed by setting 

F(r, p) = F*(~r, p) = F*(r*, p) 
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so that 

OF*/Qr = -ev" OF*/~r* + C[F] 

This is the same as (3.1) on the slow time scale t = e r  if one drops the 
asterisks. 

Both methods of introducing e are equivalent because the Boltzmann 
equation is invariant for simultaneous rescaling of F and (t, r). Note that 
is a physical quantity: the ratio of mean free path and variation length. It is 
not just a bookkeeping parameter, but can be varied by increasing the den- 
sity or reducing the gradients. Hence, it makes sense to consider the limit 
e-~0; the separation of time scales is well-defined and physically 
meaningful. This limit is not incompatible with the Bottzmann equation 
itself, because the validity of this equation is based on the smallness of the 
density multiplied by the volume of a molecule. 

Equation (3.1) is of the type (2.1) if one identifies r, p with the sub- 
script j, and F(r, p) with the unknown xj. We want to eliminate the fast 
motion of the molecules so as to be left with the slow motion. Our first task 
is to find the constants of the motion of the unperturbed equation (2.2), 
which in the present case is 

~?F(r, p)/ar = C[F] (3.4) 

According to (2.3), they must be functionals Y[F] having the property 

6Y[F] ~rF~ fdrdp  L j=O (3.5) 

where 6 denotes the functional derivative. We know that there are five 
"collisional invariants" 

~0 = P2/2m, ~1,2,3 = P, tP4 = 1 

We also know that for a simple gas of particles without internal degrees of 
freedom these are the only ones. (18) Hence, we have at each space point r 
five quantities (3.5), namely the five moments 

e(r) = f (p2/2m) F(r, p) dp 

g(r) = f pF(r, p) dp (3.6) 

n(r) = f F(r, p) dp 
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This fivefold infinity constitutes the complete set of independent slow 
variables Yr. 

For  the fast variables zv one may take the remaining moments of F at 
each space point. They vary on the time scale of the collisions, whereas the 
Yr vary only through transport. Of course one may choose for the z v any 
other set of parameters that identify F(r, p) after the values of its moments 
(3.6) are fixed. Actually, we shall not need to make any explicit choice for 
the zv, but we shall use the term "higher moments" for concreteness. 

Next we have to solve (2.7), or, in the present case, 

C [ F  {~ = 0 (3.7) 

From this equation the higher moments z~ ~ have to be found for prescribed 
values of thefive slow moments (3.6). The solution is the local Maxwellian 

F(~ p) = exp[  - ~ ( r )  - "/(r) �9 p - /~(r)  p2/2m ] (3.8) 

where 2(r), 7(r), and fl(r) are adjusted to give the prescribed values of e(r), 
g(r), and n(r): 

e ~ f (p2/2m) exp(-~ ,"  p - flpZ/2m) dp = e(r) (3.9a) 

e ~ ] p exp( - '~- p - fip2/2m) dp = g(r) (3.9b) 

e -~ f exp( - 7 '  P - tiP2~ 2m) dp = n(r) (3.9c) 

The H-theorem provides the Liapunov function that guarantees that (3.8) 
is the unique attractor for fixed values of the slow variables e, g, and n. 

The analog of the equations (2.6a) are the conservation equations for 
the moments n, g, and e obtained from (3.1) by integrating 

On(t, r) = _ c?2. r| l} F(t, r, p) dp (3.10a) 
Ot 8r o m 

8g(t, r) O J f P pF(t, r, p) dp (3.10b) 
8t Or m 

2 

Oe(t,r)_ O f P P-ff--F(t,r,p) dp (3.10c) 
8t 8r m zm 

The analog of (2.9) is obtained by substituting for F its lowest 
approximation (3.8). The result is the Euler equations for an ideal gas, as is 
well known. 
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Note that this result appears as the lowest order equation (3.8) in the 
process of eliminating fast variables. In the usual Chapman-Enskog treat- 
ment it appears as the integrability condition for the next-order equation. 
The explanation is that this integrability condition expresses the 
requirement that one is dealing with a solution that can be expanded in 8, 
and this requirement is already implied in the general scheme of Section 2. 

To obtain the next approximation, the corrections z~ 11 of the fast 
moments have to be computed from (2.10). A slight complication is that we 
do not know the z~ ~ explicitly; rather, they are implicitly given as the 
moments of (3.8). It is therefore convenient to combine (2.10) with the 
equation (2.9) for the slow moments (which has previously been satisfied), 
so as to obtain an equation for all moments, that is, for the entire first- 
order correction F (1) of the distribution. That amounts to extracting the 
terms of order eo from (3.1): 

8F(~ P) 8F(~ P) 4- f dr' dp' 8C[F(~ (3.11) 
8t - - v"  8 ~  8F(~ ', p') F(~)(r" p') 

From this equation the fast moments z~ t) in f (1) have to be determined 
without altering the values of the slow moments y r =  {n(r), g(r), e(r)}. 
Hence one must solve (3.11) with the supplementary conditions 

f (~2/2m)f(1) d~=0 ' f p~(1) d~ ~._~ 0, f F (1) d~-~0 (3.12) 

Equation (3.11) is a linear, inhomogeneous integral equation for F ~ 
The integrability condition is equivalent to the Euler equations, which have 
been satisfied in the previous approximation. Hence the solution exists and 
it is made unique by the additional requirements (3.12). The corrected 
equation (2.11) for the slow variables is obtained by inserting the corrected 
F=F(~ (~) found in this way into (3.10). The result is the Navier- 
Stokes equations. The only difficulty is that no explicit solution of (3.11) is 
known (except in the case of Maxwell molecules). Nor does the equation 
involve a small parameter on which to base a systematic expansion, so that 
one has to invoke various less systematic approximation methods. (a'6~ tf 
one expresses (3.11) as an equation of the moments, one obtains an infinite 
hierarchy of equations for the infinite sequence of z~ 1). 

All this is of course precisely the Chapman-Enskog scheme. We only 
wanted to demonstrate that the scheme follows uniquely from the general 
method for eliminating fast variables. It is also seen that the higher orders in 
e merely add corrections to the five equations for n, g, and e and never lead 
to the addition of equations for additional slow (or perhaps semislow) quan- 
tities. The systematic elimination of slow variables does not justify singling 
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out the heat flow or the off-diagonal elements of the pressure tensor (~8'3) for 
special treatment. All Zv vary rapidly on the time scale of the collisions. The 
expansion in e leads uniquely to n, g, and e as the only quantities whose 
rate of variation is determined by the gradients. It does not lead to "exten- 
ded non-equilibrium thermodynamics. "(~2) 

4. THE  R E L A T I V I S T I C  C H A P M A N - E N S K O G  T R E A T M E N T  

Greek labels #, v, 2 take the values 0, 1, 2, 3, and Roman labels k, l 
take the values 1, 2, 3. The metric tensor is 

guy = diag(1, - 1, - 1 ,  - 1)= gV~ 

We write x~=( t , r ) ,  p~=((p~+mZ)l/Z,p), and p/p~ Then dp/p ~ is 
invariant and so is the particle density in phase space F(t, r, p)m F(x, p). 
More precisely, a particle at the space-time point x with momentum p is 
seen by another observer at x' with momentum p'; his particle density F' is 
related to F by F'(x', p') = F(x, p). The four-vector 

N~(x) = f p~'F(x, p) dp/p ~ = (n, n ( v ) )  (4.1) 

represents the particle density and flow in space. The tensor 

T~'(x) = f P"PVF( x, p) dWp ~ (4.2) 

represents the energy density T ~176 the momentum density 
T ~ =g~(x), and the stresses T kl. 

The relativistic Boltzmann equation is the same as (3.1), but for two 
modifications. First, one now has v = p/pO. Second, (3.2) is to be replaced 
with 

w(p, Pl IP2, P3)= 64(P~ + P ~ - P ~ - P ~ )  a (4.3) 

where a is to be computed by means of the relativistic dynamics of two- 
body collisions/~4'16) Thus, the relativistic Boltzmann equation is 

t?F(x, p) pk OF 1 
F -  C[FI (4.4) 0t pO t?x k e 

where C[F] again has the form (3.2) with w as in (4.3). It is customary to 
write the equation in a manifestly covariant way (see Section 5), but that is 
neither necessary nor convenient for our purpose. The reason is that 
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eliminating fast variables is an inherently noncovariant approximation 
process since it singles out the time coordinate. 

To eliminate the fast variables, we again first have to identify the slow 
variables defined by (3.5). The collisional invariants corresponding to (4.3) 
a r e  

00 = (Pz+m2) 1/2, ~1,2.3 =P, ~4 = 1 

and they are again the only ones. O4) Hence, we have again at each point r 
five slow variables, namely the five moments 

= t p)dp, = f p)dp (4.5) 

They obey the equations [obtained by multiplying (4.4) with the several 
and integrating] 

~ g ~  0 f p~ Ot Oxt -~6 p~F(x, p) dp (4.6a) 

an C P' ~t-- ~x t j -~ F(x, p) dp (4.6b) 

These are the analogs of (2.6a). 
The fast variables Zv are the remaining moments of F. To obtain the 

zeroth approximation, one has to solve (2.7), that is, for given g~ and n we 
have to determine the higher moments of F in such a way that (3.7) is 
obeyed. The solution is again the local equilibrium distribution, which is 
the Jiittner distribution ~21'19~ 

f(~ p) = exp[ - c~(x) - fl~(x) p~'] (4.7) 

The parameters ~ and fi~. have to be adjusted to obtain the prescribed g~ 
and n (at each space-time point x): 

e -~ f exp(--fi;.p ;') d p = n =  f Fdp (4.8a) 

e ~fpkexp(--fl;~p;)dp=g k= pkFdp (4.8b) 

e ~fp~ p~ (4.8c) 

It is shown in the Appendix that there exists a unique solution c~, fix. 
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The zeroth approximation (2.9) for the evolution of the slow variables 
is obtained by replacing F in (4.6) with F (~ 

pt 
On_~t ~x ~--~--e ~ I--~exp(-fl~.Y~) dp (4.9a) 

63gk __ ~ ( plp~- 
Ot -Ux te ~ J - - ~  exp( -  fi~y~) dp (4.9b) 

~e_  
e ~ fyexp( - f i ;~p; )dp  (4.9c) 

Together with the equations (4.8), which connect a and fl~. with n, g, and e, 
this is a closed set of equations, analogous to the nonrelativistic Euler 
equations. 

In order to give this result a more familiar form, we set (fi~.fi~)l/2= fl 
and note that 

T= 1/kBfi, U, = flJfl, # = -a/fl (4.10) 

are the temperature, four-velocity of the fluid, and chemical potential. For 
a gas in equilibrium these identifications follow uniquely from the general 
principles of statistical mechanics. For our nonequilibrium gas described by 
F(x, p) the local values of T(x), Uu(x), and tt(x) are defined as those of the 
approximating local equilibrium distribution F (~ They are uniquely deter- 
mined by (4.8). 

We shall call (4.10) intensive variables and refer to n, g, and e as 
"extensive" variables (although they are actually extensive quantities per 
unit volume). The equations of motion (4.9) express the rate of change of 
the extensive variables in terms of the gradients of the intensive ones. The 
equations of state, or "constituent equations" (4.8) are the link between the 
intensive and extensive variables needed to close the equations of motion. 
All these variables refer to the slow or phenomenological level of descrip- 
tion. Note, however, that the equation of motion for e, 

(?e (? ~" c~g t 
~t ~x t J ptF dp - ~x t 

is already closed within the extensive variables, even without 
approximation. 

The next approximation requires the solution of (2.10), which in the 
present case takes the form of the integral equation (3.11) for F ~) with the 
additional requirements 

f p~F (1) dp = O, f F(1) dp = 0 
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The integrability conditions are the lower order equations (4.9) previously 
satisfied. In the Chapman-Enskog theory this is usually called the "second" 
approximation. It results in the hydrodynamic equations, including 
expressions for the viscosity and heat conduction. It contrast with the non- 
relativistic case, there also results a bulk viscosity, ~31 which is a con- 
sequence of the fact that v is not proportional to P. 

5. DISCUSSION OF THE RELATIVISTIC CASE 

The literature on relativistic kinetic theory (13 16) utilizes a manifestly 
covariant form of the Boltzmann equation. One defines 

o o o o 
W(p, Pl ] P2, P3) = P Pl P2 P3 w(P, Pl 122, P3) 

which turns out to be invariant under a simultaneous Lorentz transfor- 
mation of the p's. Then (4.4) may be written 

0F 1 
p~ = - D [ F ]  (5.1a) 

~ x  ~ g 

D[F] = f W(p, Pl I P2, P3)[F(p2) F(p3) 

d21 d22 d23 
- F(p) F(pl)] (5.1b) 

pO pO2 p03 

This equation is the same as (4.4), and therefore no more and no less 
covariant, but its covariance is manifest. 

The existing accounts of the application of the Chapman-Enskog 
treatment to this relativistic Boltzmann equation are not based on a 
systematic elimination of the fast variables. Rather, one follows the non- 
relativistic paradigm and postulates, in analogy with (3.8), that the zeroth 
approximation is a local equilibrium distribution of the form (4.7). The 
question then arises of how to fit the parameters e(x) and ilk(x) to the 
actual F(x, p). In the absence of a clear prescription, three options have 
emerged in the literature. 

(i) Following Eckart, (22) one first defines as "rest frame" the one in 
which the mean velocity (v) ,  defined in (4.1), vanishes. In this rest frame 
one postulates for F (~ the expression (4.7) with /~k---0 and subsequently 
requires/~o and c~ to have the values that reproduce the actual energy and 
particle densities in this frame: 
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f p~ p) dp = f p~176 p) dp 

= e-~ f pO exp( -f lop ~ clp (5.2a) 

f F(x, p) dp = f F(~ p) dp 

= e ~ f e x p ( - f l o p  ~ dp (5.2b) 

In all other frames the c~ has the same value and the /~ is obtained by 
Lorentz transformation. 

(ii) Following Landau and Lifshitz, (23) one chooses as rest frame the 
one in which ( p )  vanishes, that is, T~ 0, and requires that in this frame 
the energy and particle densities match. (This option remains feasible if the 
particle number is not conserved.) 

In both these options the fitting of F (~ to F is nonlinear in F. This 
does not appear from (5.2), but determining the rest frame and transform- 
ing to it is a highly nonlinear procedure. Option (i) is hard to generalize to 
mixtures, since there is no unique way to select a rest frame. The next 
option, although linear, has the same drawback. 

(iii) Stewart (15) chose to fit F (~ to F so as first to reproduce the 
actual N u 

f P~F(~ P"F(P)~ 

This is the same requirement as used in (i). For  the fifth condition needed 
to fix ~ and fl~ he requires that also the value of 

T~.(x) = m 2 f F(x, p) dp/p ~ (5.3) 

is reproduced by F (~ 
Each of these three options is constructed so as to be &variant, in the 

sense that two observers, looking at the same F, will fit the same F (~ to it. 
This is clear both for (i) and for (ii), because all observers are told to refer 
back to one or the other rest frame. Option (iii) achieves invariance in a 
more elegant way: it uses for the fitting the covariant N ~ and invariant 
trace (5.3). 

The three options are not equivalent. They all start from the exact 
conservation laws (4.6) for the extensive variables; they all insert for F a 

822/46/'3-4-19 
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zeroth approximation F (~ of the form (4.7) to arrive at (4.9); but in each of 
them the intensive variables e and /~ have a different meaning and are 
linked to the extensive variables by different equations of state. Thus, the 
three options assign to the same gas different values for the local velocity, 
density, and temperature. There are no reasons to prefer any one of them, 
only arguments of convenience or elegance. We have shown in Section 4 
that the systematic elimination of fast variables leads inescapably to a 
fourth procedure--the word "option" being inappropriate. 

This fourth procedure is not covariant: each observer approximates F 
by his own F (m. Formally, the reason is that the elimination of fast 
variables treats time as different from the space coordinates. Physically, it 
means that what is observed as a slow variable by one observer does not 
appear as a slow variable to another. The slow variables of one observer 
cannot be expressed in terms of those of the other, because each observer 
extracts different aspects of F(x, p) as his private slow variables. It is true 
that g" = T u~ transforms as the column of a tensor, but this transformation 
involves elements T kt, which are fast variables and depend on the detailed 
function F(x, p), not just on its slow aspects. 

Incidentally, in general relativity one often assumes the existence of a 
relativistic fluid having a well-defined local four-velocity. That implies that 
locally the fluid is nonrelativistic. In each fluid element the particles have 
nonrelativistic velocities with respect to each other, but far away elements 
may have relativistically different velocities. 

Finally, it may be remarked that adopting additional moments of F 
into the macroscopic description (24'15~ is just as much a violation of the 
idea of eliminating fast variables as in the nonrelativistic case, Section 3. 

6. THE NECESSITY OF STARTING WITH 
THE CORRECT SLOW VARIABLES 

The lact of uniqueness in the usual treatments of the relativistic case is 
sometimes excused by the comment that differences in the choice of the 
zeroth order are automatically compensated by the higher order terms. It is 
true that, when the zeroth approximation is not based on the actual slow 
variables (4.5), one obtains compensating terms in the next order. 
However, this amounts to expanding not only the fast variables, but the 
slow variables as well. As a result, the compensating terms are secular, that 
is, they represent an expansion in (~t) rather than in ~. The aim of the 
method for eliminating fast variables is just to avoid such terms. 

As an illustration of the occurrence of these terms, I here give another 
way of eliminating fast variables. It has the apparent advantage over the 
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one in Section 2 that no explicit transformation to slow and fast variables 
is required. That looks attractive because it avoids the "slight com- 
plication" mentioned in Section 3, namely that the fast variables z~ ~ not 
given explicitly. However, the drawback is that the slow variables are not 
identified from the start and have to be corrected in the higher orders, 
which gives rise to the dreaded secular terms. 

Consider Eq. (2.1) and its reduced or unperturbed form (2.2). In the 
latter equation the Yr are constants, and so are the z~ ~ that are found from 
(2.7). Suppose one transforms (Yr, z~ ~ back into the variables xj and calls 
the result x} ~ that is, according to (2.4), 

Then one has 

Yr = Yr (X(~  Z~ O) = Zv(X(O)) 

~(x(~ 0) = 0 (6.1) 

Thus, x~ ~ is an equilibrium point of (2.2) and since (2.7) has one solution 
for each set of values of the y~, there is an R-dimensional manifold of such 
points. The aim is to find the slow motion along this manifold caused by 
the higher terms in (2.1). 

Set 

f j (x ;  = f}~ + + . . .  

and expand xj in the same way. Write t = ez and collect successive orders 
of e: 

dxJ~ = f} ,? (x  (6.2) 

dx} l ) / d t  = f } ~ ( x  (0)) x (2) -~- i f (~(x(~ X(kl)X} 1) -'[-fj(.l)(x(0)) X (1) (6.3) 

The subscripts k and l denote differentiations, and summation is implied. 
Equations (6.2) have to be solved for x} ~ with the constraint (6.1); the x(k 1) 
serve as Lagrange parameters. The J x J matrix fJg) is of rank N = J -  R, 
because it has R left null vectors according to (2.3). Thus, the J quantities 
x~ 1) correspond effectively to only N adjustable terms in (6.2), just enough 
to satisfy (6.1) as well. On the other hand, there is still an R-parameter 
freedom in the choice of x~ 1). 

This freedom is the subject of (6.3). Here the x~ 2) are effectively N 
Lagrange parameters, just enough to solve (6.3) for x} 1) subject to the N 
constraints that resulted from the solution of (6.2). In this way one finds 
xj(t) order by order. No explicit separation of slow and fast variables is 
needed. 
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However, the resulting equations (6.1)-(6.3) have a very different 
structure than those of Section 2. There the slow variables Yr obeyed to 
lowest order (2.9); the next order (2.11) provided an improvement of this 
equation. In the present approach the lowest order (6.2) with (6.1) 
describes a slow motion of x} ~ The next order does not alter this equation, 
but adds a term to x} ~ so as to obtain an improved xj= x~~ ax} 1). This 
implies that the slow part of xj is expanded in e together with the fast part. 
As a consequence, the functions f}0),f}l) .... are expanded around the 
uncorrected value xJ ~ For instance, the last term of (6.3) is correcting for 
the fact that f}~) in (6.2) was taken at the uncorrected x} ~ This term is 
secular, because x} ~) varies on the slow time scale. 

When the method of this section is applied to the Boltzmann equation 
it appears to be just the Hilbert expansion (as noted by a referee), which is 
known to produce secular terms. (2) Our calculation serves only to illustrate 
how secular terms arise as a penalty for not starting out from the correct 
slow variables. To actually prove that the same is true for the Chapman- 
Enskog expansion that starts from one of the three options mentioned 
would require the explicit calculation of the second-order terms. 

APPENDIX 

We first prove that Eqs. (4.8) cannot have more than one solution 
c~, fix. Divide by n in order to eliminate c~, 

g--~ [pkexp(--fi~PX)dP- 8 l o g Z  
n ~ exp( -- fl~ p;) dp Oflk 

e ~p~ 
n ~ exp(-fl;~p ~) dp ~fio 

(A.!a) 

(A.lb) 

We have introduced the function 

Z(fl;.) = f exp( - fl~ p~) dp = f exp[ - fig pk - fio(p 2 + 1) 1/2 ] dp 

which exists for/~o> Illl and is positive. The exponent is linear in/3~ and 
therefore (marginally) convex. Hence, the exponential itself is (by 
definition) logarithmically convex and the integral, being a sum of such 
functions, is also logarithmically convex. Thus, log Z is represented by a 
convex hypersurface over the space of the four variables fi~. Equations 
(A.1) determine the point on the hypersurface in which the tangent hyper- 
plane has the direction e/n:gk/n:l. There cannot be more than one such 
point, because of the convexity. Hence, (A.1) cannot have more than one 
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solution fi;.~ Subsequently, ~ has to be found from (4.8a) and is also uni- 
quely determined. 

Next we prove that no solutions of (4.8) exist unless 

(e/n) 2 - (g/n) 2 > 1 (A.2) 

For any two vectors p and p' one easily verifies 

(p2+ l)~/2(p,2 + 1 ) i / 2 _ p . p , >  1 (A.3) 

Let both vectors be random, independently distributed with the same 
probability p. Multiply (A.3) with p(p)p(p') and integrate: 

((p2 + 1)~/2>2_ (p)2  ~> 1 (A.4) 

The equality sign in (A.3) applies only if p' is equal to p. Hence, (A.4) is a 
strict inequality unless p(p) is a delta function. Take p(p)= 
[ e x p ( - f l ~ p ; ~ ) ] / Z  and (A.4) becomes the strict inequality (A.2). An alter- 
native proof can be given using the convexity of the function (p2+ 1)~/z.(25) 

Finally, we prove the existence of a solution c~, fl~ subject to the con- 
ditions (A.2) and n > 0. We may assume p parallel to g and take that direc- 
tion as the z axis. Then there are two equations for two unknowns flz and 

flo, 

gZ c~ e c3 
n - c?flz log Z, - Z n c~fio log 

z(/~0,/~z) = ; exp[-~zp- ' -~o(p  2 + l) '/23 dp 

fiz 3 ~ { e x p [ f l z P -  fl~ + 1)t/2]} p dp (A.5) 

Z is defined inside the sector A given by - cc < flz < ~ ,  flo > ]fl~[. We need 
to know the image of A in the (u, v) plane, where 

~3 log Z ~ log Z 

& z  ' &o 

Due to the convexity, the mapping is one-to-one and it suffices to find the 
images of the boundaries of A. 



726 van  Kampen 

When both rio and rz are large, the integral (A.5) is dominated by the 
maximum of the exponent at Pm= ~z(J ~2 -- r-zr 1/2. One obtains 
asymptotically 

Z=__ 

U---- 

U~ 

z," ~t~O -- Pz! J (2~),/2 (r20_ r2~s/4 exp[-~a2 ~i,~ 

,. o(,)  
(to ~ -  r~) 1/2 ~ Yo 

(rg- ~)1/2 + o 

Thus, the hyperbola v z - u 2 = 1 is part of the boundary of the image of A. 
This coincides with the condition (A.2). 

When flo and fl~ are finite, the integral (A.5) diverges as r0 approaches 
Ifl~l, that is, on the boundary of A. Write 

For fixed A > 1 the first integral is always finite and 

{ e x p [ f l z p - f l o ( p 2  + 1 ) 1 / 2 ] }  pdp,~- {exp[(r:-flo) p]} pdp 

1 

( t o - L )  2 

where again finite terms are omitted. Hence 

2;[ 1 
Z = ( r io-  fl~)2 (to + flz) 2 t- finite terms 

4flz 4to 

~o~-rz ~' r ~ - r ~  

Thus, the point u, v moves to infinity when the point rio, flz approaches the 
boundary of A. 

The conclusion is that the interior of A is mapped onto the region in 
the u, v plane bounded by the hyperbola, that is, v>  (u2+ 1) 1/2. Thus, for 
each set of values for e, gk obeying (A.2) there is one and only one set of 
four numbers/3;, obeying rio > IPl for which (A.1) is satisfied. Subsequently 
for any n > 0 there is a single real e for which also (4.8a) is satisfied. 
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